Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 11: 764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973572

RESUMO

There is evidence that long-term cannabis use is associated with alterations to glutamate neurotransmission and glial function. In this study, 26 long-term cannabis users (males=65.4%) and 47 non-cannabis using healthy controls (males=44.6%) underwent proton magnetic resonance spectroscopy (1H-MRS) of the anterior cingulate cortex (ACC) in order to characterize neurometabolite alterations in cannabis users and to examine associations between neurometabolites, cannabis exposure, and cannabis use behaviors. Myo-inositol, a marker of glial function, and glutamate metabolites did not differ between healthy controls and cannabis users or cannabis users who met criteria for DSM5 cannabis use disorder (n=17). Lower myo-inositol, a putative marker of glial function, was related to greater problematic drug use (F1,22 = 11.95, p=.002; Cohen's f=0.59, large effect; Drug Abuse Screening Test) and severity of cannabis dependence (F1,22 = 6.61, p=.17; Cohen's f=0.44, large effect). Further, past-year cannabis exposure exerted different effects on glutamate and glutamate+glutamine in males and females (glutamate: F1,21 = 6.31, p=.02; glutamate+glutamine: F1,21 = 7.20, p=.014), such that greater past-year cannabis exposure was related to higher concentrations of glutamate metabolites in male cannabis users (glutamate: F1,14 = 25.94, p=.00016; Cohen's f=1.32, large effect; glutamate+glutamine: F1,14 = 23.24, p=.00027, Cohen's f=1.24, large effect) but not in female cannabis users (glutamate: F1,6 = 1.37, p=0.78; glutamate+glutamine: F1,6 = 0.001, p=.97). The present results extend existing evidence of altered glial function and glutamate metabolism with cannabis use by providing evidence linking problematic drug use behaviors with glial function as measured with myo-inositol and recent chronic cannabis exposure to alterations in glutamate metabolism. This provides novel directions for the interrogation of the impact of cannabis use on brain neurochemistry.

2.
Biol Psychiatry ; 88(9): 727-735, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387132

RESUMO

BACKGROUND: The brain's endocannabinoid system, the primary target of cannabis, has been implicated in psychosis. The endocannabinoid anandamide is elevated in cerebrospinal fluid of patients with schizophrenia. Fatty acid amide hydrolase (FAAH) controls brain anandamide levels; however, it is unknown if FAAH is altered in vivo in psychosis or related to positive psychotic symptoms. METHODS: Twenty-seven patients with schizophrenia spectrum disorders and 36 healthy control subjects completed high-resolution positron emission tomography scans with the novel FAAH radioligand [11C]CURB and structural magnetic resonance imaging. Data were analyzed using the validated irreversible 2-tissue compartment model with a metabolite-corrected arterial input function. RESULTS: FAAH did not differ significantly between patients with psychotic disorders and healthy control subjects (F1,62.85 = 0.48, p = .49). In contrast, lower FAAH predicted greater positive psychotic symptom severity, with the strongest effect observed for the positive symptom dimension, which includes suspiciousness, delusions, unusual thought content, and hallucinations (F1,26.69 = 12.42, p = .002; Cohen's f = 0.42, large effect). Shorter duration of illness (F1,26.95 = 13.78, p = .001; Cohen's f = 0.39, medium to large effect) and duration of untreated psychosis predicted lower FAAH (F1,26.95 = 6.03, p = .021, Cohen's f = 0.27, medium effect). These results were not explained by past cannabis exposure or current intake of antipsychotic medications. FAAH exhibited marked differences across brain regions (F7,112.62 = 175.85, p < 1 × 10-56; Cohen's f > 1). Overall, FAAH was higher in female subjects than in male subjects (F1,62.84 = 10.05, p = .002; Cohen's f = 0.37). CONCLUSIONS: This first study of brain FAAH in psychosis indicates that FAAH may represent a biomarker of disease state of potential utility for clinical studies targeting psychotic symptoms or as a novel target for interventions to treat psychotic symptoms.


Assuntos
Amidoidrolases , Transtornos Psicóticos , Amidoidrolases/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Endocanabinoides , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/tratamento farmacológico
3.
Sci Rep ; 9(1): 12695, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481687

RESUMO

Altered mitochondrial electron transport chain function has been implicated in the pathophysiology and etiology of schizophrenia. To date, our previously published study (i.e. first cohort) is still the only study to demonstrate that mitochondrial electron transport chain is not altered in white blood cells from individuals at clinical high risk for psychosis. Here, we aimed to replicate our previous findings with an independent set of samples and validate the levels of mitochondrial complex I-V content in individuals at clinical high risk for psychosis. We demonstrated that the second cohort (i.e. validation cohort) expressed similar results as the first cohort. We combined the first cohort study with the second cohort and once more validated a lack of differential levels in mitochondrial complex I-V content between the two groups. In addition, we were able to validate a correlation between complex III content and prodromal negative symptom severity when the two cohorts studies were combined. Additionally, a correlation between complex V content and prodromal disorganization symptom severity was found when the two cohorts were combined. In conclusion, our results showed that dysfunction of the mitochondrial electron transport chain is not detected in peripheral blood mononuclear cells of individuals in the putative prodromal stage of schizophrenia.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Transtornos Psicóticos/enzimologia , Esquizofrenia/enzimologia , Feminino , Humanos , Masculino , Sintomas Prodrômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...